Follow this and additional works at: https://scholarworks.uno.edu/syllabi

This is an older syllabus and should not be used as a substitute for the syllabus for a current semester course.

Recommended Citation
https://scholarworks.uno.edu/syllabi/375

This Syllabus is brought to you for free and open access by ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Syllabi by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.
ENEE – 3540 ENGINEERING ELECTRONICS – Fall 2015

Syllabus

Instructor information:
Dr. Dimitrios Charalampidis
Office: EN840, Phone: 280-7415, Email: dcharala@uno.edu
Office Hours: MWF 10:00 AM – 12:00 PM
or by appointment
(walk-ins are ok but I may not be available even if in office)

Class:
MWF 12:00 PM – 12:50 PM, Room: EN 320

Textbook:

Prerequisites:
ENE 2551 – Circuits II.

Objectives:
Students will learn about the characteristics of modern solid-state non-linear and active devices, representative circuit models, and the analysis/design of typical circuits using these devices.

Topics:

<table>
<thead>
<tr>
<th>Class Meetings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Electronics</td>
</tr>
<tr>
<td>2. Solid-State Electronics (Ch. 2)</td>
</tr>
<tr>
<td>3. Solid-State Diodes and Diode Circuits (Ch. 3)</td>
</tr>
<tr>
<td>4. Bipolar Junction Transistors – BJT (Ch. 5)</td>
</tr>
<tr>
<td>5. Field-Effect Transistors – FET (Ch. 4)</td>
</tr>
<tr>
<td>6. Small-Signal Modeling and Linear Amplification (Ch. 13)</td>
</tr>
</tbody>
</table>

Total Lectures: 38
Class Reviews: 3
Exams: 3
Holidays/Breaks: 3

Total: 47
Grading Scheme

and Important Dates:

Homework (6%): There will be several homework assignments.

Project (10%): There will be a project on Multisim (due on Nov. 4).

Test I (18%): In-class exam, Ch. 2, 3. Closed book (Sept. 25, tentatively).

Test II (18%): In-class exam, Ch. 5. Closed book (Oct. 21, tentatively).

Test III (18%): In-class exam, Ch. 4. Closed book (Nov. 18, tentatively).

Final Exam (30%): Comprehensive, Thursday, Dec. 12, 12:30 PM – 2:30 PM, EN 317, Closed book.

***Extra Credit Assignments will not be given.

Attendance:

Each unexcused absence after the first five will automatically decrease the final score by 0.5%, up to a maximum of 5%. Students who cannot make a class should contact the instructor in advance, or bring a justification document (doctor’s notice etc).

Academic Integrity:

Academic integrity is fundamental to the process of learning and evaluating academic performance. Academic dishonesty will not be tolerated. Academic dishonesty includes, but is not limited to, the following: cheating, plagiarism, tampering with academic records and examinations, falsifying identity, and being an accessory to acts of academic dishonesty. Refer to the Student Code of Conduct for further information. The Code is available online at http://www.studentaffairs.uno.edu.

Accommodations for Students with Disabilities:

It is University policy to provide, on a flexible and individualized basis, reasonable accommodations to students who have disabilities that may affect their ability to participate in course activities or to meet course requirements. Students with disabilities should contact the Office of Disability Services as well as their instructors to discuss their individual needs for accommodations. For more information, please go to http://www.ods.uno.edu.
Moodle:

Moodle will be widely used for communication, announcements, posting course notes, assignments, solutions, grades, etc. Students must have Internet access to the course Moodle site at http://www.uno.edu/moodle

Other Information:

- Do not use cell phones in the classrooms.
- Cell phones are also not allowed during tests.
- The use of laptop computers is only allowed for note taking during lectures, and not for working on assignments for other classes or during tests.

Student Learning Outcomes:

(a) an ability to apply knowledge of mathematics, science and engineering
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(e) an ability to identify, formulate, and solve engineering problems
(h) the broad education necessary to understand the impact of engineering solutions in a global and societal context
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
(n) knowledge of advanced mathematics including differential equations, linear algebra, complex variables, and discrete mathematics