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Abstract 

 
Memory forensics is increasingly used to detect and analyze sophisticated malware.  In the 
last decade, major advances in memory forensics have made analysis of kernel-level mal-
ware straightforward. Kernel-level malware has been favored by attackers because it es-
sentially provides complete control over a machine. This has changed recently as operating 
systems vendors now routinely enforce driving signing and strategies for protecting kernel 
data, such as Patch Guard, have made userland attacks much more attractive to malware 
authors. 
  
In this thesis, new techniques for detecting userland malware written in Objective-C on 
Mac OS X are presented. As the thesis illustrates, Objective-C provides a rich set of APIs that 
malware uses to manipulate and steal data and to perform other malicious activities.  The 
novel memory forensics techniques presented in this thesis deeply examine the state of the 
Objective-C runtime, identifying a number of suspicious activities, from keystroke logging 
to pointer swizzling.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Memory Forensics, Objective C, Malware Detection, Volatility, Incident Response
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1. Introduction 

 

1.1. Memory Forensics 

 
Memory forensics has quickly become one of the primary methods for digital forensic in-
vestigators to detect and analyze sophisticated malware and rootkits. This method of anal-
ysis operates by reproducing the algorithms and data structures of an operating system 
and its applications in an offline manner. By not relying on the live system and its APIs to 
determine system state, memory forensics tools can acquire artifacts not available to nor-
mal system programmers as well as from APIs that malware has manipulated. 
 

1.2. Recent Operating System Hardening Strategies 

 
To date, the bulk of memory forensics research has targeted kernel level analysis. This oc-
curred because kernel-level rootkits wield great power over running systems, including 
control of hardware devices, the operating system itself, as well as all running applications. 
Kernel level rootkits also make it trivial for attackers to hide a wide range of activity, such 
as installation of attacker tools, lateral movement, and long-term, persistent infection. 
 
This model for malware has recently changed as operating systems have heavily locked 
down access to kernel mode by unknown third party code and taken steps to attempt to 
protect kernel-level data structures and code from manipulation. The most prominent ex-
amples of this trend are the enforcement of signed drivers on Microsoft Windows [1] and 
Mac OS X [2] as well as Microsoft Patch Guard [3]. While all of these protections have been 
temporarily bypassed, the discovered vulnerabilities were subsequently patched. Regard-
less, the protections still significantly raise the bar for attackers to successfully load their 
rootkits on compromised systems [4, 5, 6, 7]. 
 

1.3. Userland Malware 

 
The inability to utilize kernel-level malware has led to a rise in malware that operates 
mostly in process memory, also known as userland. This malware can accomplish many of 
the same tasks as kernel-level malware, such as hiding attacker activity from live system 
tools, stealing data, and maintaining long-term persistence, without having to enter kernel 
mode. On Windows, this has led to malware with a single executable that that can run on a 
wide variety of platforms, from Windows XP through Windows 8 and 10. Such broad OS 
support would be very difficult to do in a stable manner for any kernel-level rootkit with 
complex functionality. On Mac OS X, this has led to high-profile malware, such as Ventir [8] 
and Crisis [9], which contain both userland and kernel mode components that load sepa-
rately depending on whether they are executed with root privileges. Due to the extensive 
APIs provided by OS X, these malware samples can accomplish the same goals regardless of 
which components load. 
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1.4. Objective-C  

 
The novel contributions of this thesis target Objective-C, a language and associated runtime 
supported by Apple for development of userland applications on the OS X and iOS plat-
forms. As discussed throughout the thesis, malware can abuse the rich APIs of the Objec-
tive-C runtime system in order to monitor, steal, and manipulate a wide range of data pro-
cessed by applications. Unfortunately, these abuses are completely ignored by existing 
memory forensics research and tools. In order to detect malware using these facilities, re-
search was performed in order to produce new memory forensics analysis techniques that 
can deeply examine the state of the Objective-C runtime inside of targeted processes. These 
new defensive techniques were developed against the open source Volatility Memory Anal-
ysis Framework [32]. Volatility is one of the most popular memory forensics platforms and 
is considered an industry standard tool in the fields of incident response and malware 
analysis. In Chapter 4, each of the developed techniques is presented along with a newly 
created Volatility plugin that implements the described analysis.  Upon publication of this 
thesis, the plugins will be contributed to the open source Volatility project for use by the 
forensics community.  
 

1.5. Organization 

 
This remainder of this thesis is broken down into five sections. Section 2 discusses previ-
ous research related to this research effort. Section 3 discusses Objective-C and its compo-
nents that are relevant to memory forensic analysis. Section 4 discusses common methods 
that malware employs to abuse Objective-C. It also discusses the novel techniques devel-
oped for this thesis that allow for detection of such malware. Section 5 provides our 
roadmap of future work, and section 6 provides references to all external sources dis-
cussed in this thesis. 
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2. Related Work 

 
Although no previous memory forensic analysis efforts exist for deep analysis of Objective-
C applications, there has been substantial work in a number of related areas.  These efforts 
are discussed in this chapter. 
 

2.1. Open Source Frameworks 

 
The first open source memory forensics framework to support OS X memory analysis was 
the Volafox [39] project. Volafox is a plugin-incompatible fork of Volatility. At the time of 
Volafox’s creation, Volatility had no OS X support. For the older operating system versions 
that Volafox supports, it provides plugins for listing processes as well as each processes file 
handles, memory mappings, and network connections. It can also recover kernel infor-
mation, such as TrustedBSD policy handlers, loaded kernel modules, and mounted file sys-
tems.  Unfortunately, Volafox analysis is very sensitive to particular kernel versions and 
requires substantial developer effort to make plugins portable across operating system 
versions.  
 
Volatility, which is the most widely used memory forensics framework in digital forensics 
and incident response, gained OS X support in 2012. This work was described by two 
presentations [40, 41], and the code was incorporated into the Volatility 2.3 release. As of 
version 2.5, Volatility has over 60 plugins for OS X analysis. Due to its popularity and wide-
spread use throughout the forensics community, Volatility was chosen as the development 
framework for this thesis. 
 
In 2014, the Rekall memory forensics framework added OS X support. Rekall is a fork of 
Volatility like Volafox, and also like Volafox, Rekall analysis plugins are incompatible with 
Volatility. As of writing, Rekall has less than twenty OS X plugins, many of which are simply 
rewrites of the initial set of Volatility OS X plugins. 
 

2.2. Research Efforts 

 
The first public effort of OS X memory analysis was performed by Matthieu Suiche and pre-
sented at Black Hat DC in 2010 [38].  This research covered the data structures and algo-
rithms necessary to reconstruct mounted file systems, kernel extensions, active processes, 
and system call entries. While his paper described his research effort, no related source 
code was ever released. 
 
In 2012, Andrew F. Hay published his master’s thesis, which examined the file manager 
subsystem of OS X [42].  His research documented how to map opened files to processes, 
how to determine metadata of opened files, and the first steps towards recovering file con-
tents from memory. His work was incorporated into the Volafox memory forensics frame-
work.  
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Cem Gurkok submitted new analysis capabilities to the 2013 and 2014 Volatility plugin 
contests [43]. These plugins focused on detection of kernel level rootkits that Volatility did 
not detect at the time. This included DTrace hooks, inline code hooks, and malicious Trust-
edBSD policy handlers. These research efforts have largely been incorporated into the sta-
ble Volatility code repository and releases. 
 
In order to recovery Apple KeyChain encryption keys from memory, the original Volafox 
developer, Kyeong-Sik Lee, created a Volafox plugin that could extract potential KeyChain 
encryption keys from a memory sample.  He also created a standalone tool, chainbreaker, 
that would ingest the potential set of keys, bruteforce each one, and display the contents of 
the keychain upon successful decryption [44].  In another effort to break OS X encryption, 
in early 2016 Thomas White created a Volatility plugin that can extract FileVault2 encryp-
tions from memory captures [45]. 
 
During the course of my master’s program, I, along with my advisor, Dr. Golden Richard, 
published two papers relating to OS X memory forensics. The first, which was published at 
DFRWS 2014 and won the best paper award, described how compressed, in-memory swap 
stores could be analyzed in order to recover a wealth of forensic data. Since this store is 
compressed in-memory, traditional methods of memory forensics, such as scanning and 
regular expression search, would miss any contained artifacts. The plugins described in this 
paper allowed for decompression of such pages, leading to full analysis [45]. The second 
paper discussed detection of kernel level rootkits through multiple methods in which exist-
ing memory forensics tools would miss [46]. The rootkits discussed in this paper could 
steal a variety of data related to a system’s users as well as hide malicious activity from live 
system inspection. All of the techniques disclosed in this paper were researched and devel-
oped as Volatility plugins. 
 

2.3. Objective-C Security Analysis 

 
In 2015, a researcher with the handle “nemo” published a paper, “Modern Objective-C Ex-
ploitation Techniques” in the Phrack journal [10]. In this paper, a view of Objective-C clas-
ses and runtime data structures as they are stored in memory is presented. Although 
nemo's analysis was not conducted for the same reasons as ours, many of the data struc-
tures discussed in the Phrack article are the same as those needed for the research pre-
sented in this paper.  
  

2.4. Userland Runtime Analysis 

 
Much like Objective-C for OS X and iOS, Google provides a dedicated runtime for applica-
tions on its Android platform. Known as Dalvik, this runtime provides a rich set of con-
sistent APIs for accessing the hardware and software components of Android devices.  Also, 
like Objective-C, a wide range of malware samples has abused Dalvik and its features.  
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To allow malware analysts to deeply explore Dalvik and its runtime state, a number of 
techniques have been developed. The first was presented at Source Seattle 2011 [33]. In 
that work, an algorithm for locating all of Dalvik’s classes in memory along with their asso-
ciated methods and instance variables was presented. This included the ability to present 
the human-readable form of variables, such as the readable characters for string types and 
the numerical values for integer types. No source code was ever released, however. 
 
In 2013, Holger Macht published his Master’s thesis titled “Live Memory Forensics on An-
droid with Volatility”. His thesis provides precise details of Dalvik’s data structures in 
memory as well as a number of Volatility plugins to find and analyze all of the loaded clas-
ses [34]. This level of detail allows investigators to immediately find all data structures re-
lated to a malware sample as well as locate its code in memory. 
 
These previous efforts for Dalvik closely mirror the goals of the research for the Objective-
C runtime. 
 

2.5. Userland Malware Detection 

 
A Volatility developer, Michael Ligh, released a set of plugins to analyze a number of Mi-
crosoft Windows userland APIs that provide functionality for DLL injection, keystroke log-
ging, function hooking, and more. These were documented on the Volatility Labs blog [11, 
12, 13, 14] as well as reproduced in greater detail in the book The Art of Memory Forensics 
[15]. 
 
Although the data structures and algorithms discussed in this thesis are completely differ-
ent from the ones discussed in Ligh’s work, the work of this thesis was influenced by his, as 
many of the same abuses can also be performed against OS X systems. 
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3. Objective-C 

 

3.1. Background 

 
Objective-C is an open source [21] language and associated runtime maintained by Apple 
for developers on the OS X and iOS platforms. Objective-C abstracts away many of the diffi-
cult aspects of programming systems software in C and C++ while still retaining many of 
the familiar semantics. The runtime provides very flexible runtime support for function 
calls, class instantiation, and use of variables and class members. For instance, all class and 
class member accesses can be performed based on a string name at runtime. Similarly, any 
class can locate other classes and instances at runtime based on string descriptions. As de-
scribed in Chapter 4, this dynamic runtime environment provides a wide range of features 
that can be abused by malware. 
 
Of particular relevance for memory analysis, Objective-C on Mac OS X also provides a rich 
API to access user and system activity, hardware peripherals (web cameras, microphones, 
keyboard, mouse, etc.), and integrity monitoring facilities. Due to the ease in which mal-
ware developers can leverage Objective-C to implement a wide range of malicious activity 
portably across Mac OS X versions, a number of high profile malware samples have been 
discovered that abuse the Objective-C runtime. Chapter 4 discusses how a number of these 
features are implemented by the runtime, how malware abuses them, and how they can be 
detected through memory forensics. 
 

3.2. Runtime Operations and Data Structures 

 
In order to analyze the state of the Objective-C runtime inside of a particular process, the 
developed plugins must be able to enumerate all loaded classes as well as their state. This 
analysis begins by locating the realized_class_hash global variable of the Objective-C library 
(libobjc). Plugins currently locate this global variable by one of two methods. The simplest, 
for the instances in which plugins can enumerate symbols of the library, is to find it by di-
rectly processing the library’s symbol table. This can either be done with the library file 
from disk or using Volatiltiy’s Mach-o APIs to enumerate symbols from process memory or 
the in-memory file cache. If the address is gathered from a file on disk then the address 
must be passed to each Volatility plugin. If the address cannot be discovered by these 
means, e.g., when an investigator is only supplied a memory sample and the symbol table is 
not memory-resident, then the Volatility plugins will scan through process memory and 
automatically locate the table. 
 
The realized classes hash table holds a reference to every Objective-C class (type objc_class) 
loaded within a particular process.  Of interest to us is that each class holds a reference to 
its members, including their name, type, and implementation pointer, its super classes, and 
its instance variables’ definitions.  
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3.3.  Incorporating into Volatility’s Type System 

 
In order for the Volatility plugins developed during this thesis to flexible and portable 
across versions, a representation of the relevant Objective-C data structures needed to be 
created in the Volatility types (vtypes) format. The vtypes format represents all possible C 
data structures and types as a Python hash table consumable by Volatility’s core compo-
nents. vtype specifications can be created manually during the course of reverse engineer-
ing, or, for target subsystems that are open source or for which debug symbols are availa-
ble, automatically generated.  Once a vtype specification is created for a target operating 
system or application version, then Volatility plugins can generically reference structure 
members and types, and Volatility’s object system will transparently map the member to 
the type information for the correct target version. 
 
Creating vtypes for Objective-C requires a hybrid approach, as although parts of Objective-C 
are open source, many of the components it links to are not. This prevents simply compil-
ing a debug version of the Objective-C library and then automatically extracting the type 
information.  Instead, a dummy application is used that references all the Objective-C data 
structures that Volatility relies on. This stripped down application can then be compiled 
with debugging information enabled and the types extracted using the built-in dwarfdump 
command. DWARF is the debug information format for ELF files (Linux) as well as for 
Mach-o files, which is the default OS X executable format. The output of dwarfdump can 
then be converted by existing leveraging existing Volatility helper code that puts the con-
verted dwarfdump output into the vtype format.  
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4. Objective-C Malware 

 
This chapter discusses three of the most popular methods by which Objective-C's runtime 
is abused by malware on Mac OS X.  
 

4.1. Keystroke Logging 

 

4.1.1. Background 

 
Objective-C on Mac OS X provides two library functions for monitoring a system’s keyboard 
[22]. The first, addGlobalMonitorForEventsMatchingMask, allows registration of a callback 
that will be executed each time a keystroke is pressed in any process other than the calling 
process. The second, addLocalMonitorForEventsMatchingMask, registers a callback for key-
strokes pressed in the calling process. These can be used in combination when malware 
injects itself into a foreign, long-lived process that it wishes to monitor, along with all the 
other processes that are running.  
 

4.1.2. Runtime Implementation 

 
Both of the functions discussed above for registering a keyboard callback are implemented 
in the closed source AppKit framework. AppKit in turns relies on the HIToolbox sub-
framework of the closed source Carbon framework in order to register the events with the 
global system monitor. When using these APIs, the caller must specify a handler, which will 
be called upon each key press, as well as an event mask, which specifies which events the 
user is interested in. The code in Figure 1 illustrates a simple keylogger using the global 
monitoring API to watch for keyboard down events, logging each keystroke to the system 
log. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Registering a global keylogger using Objective-C. 

Through a reverse engineering effort, it was determined that to start the global registration 
process, addGlobalMonitorForEventsMatchingMask creates an instance of NSGlobalEven-
tObserver. Both NSGlobalEventObserver, which is used for global monitoring, as well as 

-(void)applicationDidFinishLaunching: 
  (NSNotification *)aNotification { 
   [NSEvent  
     addGlobalMonitorForEventsMatchingMask: 
          NSKeyDownMask  
             handler:^(NSEvent *event){ 
                NSLog(@"User pressed: %@", 
                  event.characters);                                       
             } 
    ]; 
} 
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NSLocalEventObserver, which is used for same-process monitoring, inherit from NSEven-
tObserver. This parent class has members block and mask, which are initialized using the 
function’s parameters. addGlobalMonitorForEventsMatchingMask then calls InstallEv-
entHandler [37] with a target parameter of GetEventMonitorTarget() and a han-
dler_GlobalObserverHandler. It also sets the userData parameter to the NSEventObserver 
class that was previously created. GetEventMonitorTarget is a privileged, global event tar-
get that provides access to keyboard events. In Objective C, event targets are registered to 
receive events from the low-level hardware subsystems and are registered and handled by 
the runtime upon initialization.  The userData parameter specifies a pointer to a function 
that will be sent to the initial handler of events, which in this case is 
_GlobalObserverHandler. Every time a key is pressed, GlobalObserverHandler then extracts 
the pointer to each user-defined callback and calls it with the key pressed. 
 

4.1.3. Volatility Analysis Plugin 

 
The mac_observers plugin was created to detect applications and libraries that have regis-
tered Objective-C callbacks using the two previously described APIs.  It accomplishes this 
by finding every instance of NSEventObserver, and then reporting its handler address and 
event mask. The logic for this plugin is as follows: 
 
Enumerate every process that maps the Objective-C library. 
Locate the objc_class structure for NSEventObserver by enumerating realized_class_hash. 
Scan the data (read/write) memory regions of the process looking for the address of the 
class. This uses the fact that each instance of a class is represented by an Object structure 
whose first member, isa, points to its defining class. This successfully locates all instances 
of a given class. 
For each instance found, its handler member is mapped to its backing file, if any, and the 
mask member bitmask is decoded into its human-readable event types. 
 
Figure 2 shows the output of this plugin running against a sample keylogger application 
(kl) that implements the code shown in Figure 1. 
 

Figure 2. Output of the new Volatility mac_observers plugin, which detects keystroke log-

gers 

As Figure 2 illustrates, the handler application (kl) is correctly discovered, as is the fact that 
kl has registered interest in key down events. These events fire immediately after a key is 
pressed.  Please note that the mask parameter for the Objective-C APIs described allows for 
not only monitoring the keyboard, but also mouse clicks and presses of a touch-screen de-
vice. The plugin properly decodes the mask to uncover all of these event types. 

$ python vol.py -f kl.raw mac_observers 
Volatility Foundation Volatility Framework 2.5 
Name Pid  Class                    Mask       Method Address     Library 
---- ---  ------------------------ ---------  ------------------ -----------  
 kl  943  _NSGlobalEventObserver   NSKeyDown  0x0000000100001390 /Users/b/kl 
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4.2. Method Swizzling 

 

4.2.1.  Background 

 
Objective-C provides the ability for user-defined classes to “swizzle” methods of other clas-
ses loaded within the runtime. Swizzling a method involves swapping the method's imple-
mentation dynamically at runtime with that of another implementation. Future calls to a 
swizzled method use the new implementation instead of the original.  Swizzling essentially 
allows dynamic updates to method implementations, including those that might otherwise 
be very difficult to modify, e.g., methods for which no source code is available. 
 
From a malware analysis perspective, this is very similar to API hooking, which has been 
implemented in numerous malware samples across all modern operating systems. Tradi-
tionally, API hooks are detected by looking for functions whose first several bytes have 
been overwritten (i.e., evidence inline hooks), as well as examining runtime tables used to 
map function names to their runtime addresses for anomalies. These traditional hooks are 
already detected on Windows through Volatility’s apihooks plugin [24] and on Mac through 
the mac_apihooks plugin [25].  
Unfortunately, all existing methods for detecting API hooks will completely miss method 
swizzling in Objective C applications, since the call redirection is implemented inside the 
language runtime, and not through manipulation of the dynamic loader. This means that 
currently memory analysis cannot be used to detect malware that is deploying swizzling, 
nor will any information be provided about which hooks have been installed.  
 
The most infamous malware to use method swizzling was Crisis [23]. Although this rootkit 
was recently shown to be detectable by memory analysis techniques [35], only the kernel 
components of the malware were detected. To the best of my knowledge, no publicly avail-
able memory analysis research has been presented that proposes techniques for detecting 
the Objective-C components of Crisis (or of any other Objective-C based malware). As dis-
cussed in [29], Crisis leverages method swizzling for a number of purposes including hiding 
processes from Apple’s Activity Monitor, taking screenshots of infected systems, activating 
and recording web cameras and microphones, and hooking a wide variety of browser activ-
ity. It also employs methods for evading antivirus protection. This is particularly concern-
ing as OS X is used almost exclusively on end-user systems, and tools like Crisis are used to 
target individuals of interest to both government and criminal organizations. 
 

4.2.2.  Runtime Implementation 

 
Method swizzling is accomplished at runtime by calling the meth-
od_exchangeImplementations function [26]. This function takes two parameters, the first 
being a reference to the original method to be swizzled and the second a reference to the 
replacement method. Each method is specified by its string-based name.  In order to get a 
reference to a particular method of a particular class, the class_getInstanceMethod function 
can be used. This function takes a reference to a class and the string name of a method and 
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returns its reference. To get a reference to a particular class, the objc_getClass function can 
be called with the first parameter set to the string name of the class. The code snip in Fig-
ure 3 illustrates how Crisis performs these operations to hook the Safari web browser. 
 
From code injected into the Safari process, Crisis locates the BrowserWindowController 
class through objc_getClass. It then calls its own swizzleMethod function, passing the class, 
the Safari webFrameLoadCommitted, method and the webFrameLoadCommittedHook meth-
od, defined by Crisis. This allows Crisis to intercept every call to the method webFrame-
LoadCommitted. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Excerpt of Crisis' Hooking Code 

Runtime-supported swizzling makes method replacement at runtime trivial, as Objective-C 
can locate the original class in memory and then provide functionality to exchange the 
method’s implementation in a safe and consistent manner. This is much simpler than tradi-
tional API hooks that require malware to overwrite potentially running code or to manually 
tamper with the dynamic loader’s runtime data structures. 
 
Internally, to install the new implementation method in a swizzling operation, the Objec-
tive-C runtime locates the method_t structure corresponding to the method in the given 
class. Each class’s members are stored in a list pointed to by the bits member of the class. 
Once the method structure is located, the runtime then sets the imp method of the corre-
sponding method_t structure to the new implementation.  The imp member is simply a 
pointer to the beginning of the code (instructions) for the method. 

4.2.3.  Volatility Analysis Plugin 

 
The mac_swizzled plugin was created to detect swizzled Objective-C methods.  By default, 
the plugin will: 
 
Enumerate every process that maps the Objective-C library. 
Locate all classes using either the given realized_class_hash address or by scanning. 
For each class found, enumerate every method. 
Print the method along with its address in memory and backing library, if any. 
 

className = objc_getClass("BrowserWindowController"); 
 

swizzleMethod(className, 
  @selector(webFrameLoadCommitted:), 
  className, 
  @selector(webFrameLoadCommittedHook:)); 

 
function swizzleMethod(c1, m1, c2, m2) { 

method_exchangeImplementations( 
  class_getInstanceMethod(c1, m1), 
  class_getInstanceMethod(c2, m2)); 

} 
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Figure 4 illustrates the output of the mac_swizzled plugin, using the default output (the 
pathnames have been trimmed in the figure to make them fit).  As the figure shows, the 
plugin is able to successfully locate and print information about all loaded methods. This 
can be very useful when an analyst wants to fully understand what is occurring on a system 
and all the components loaded into a particular process. A downside of this approach, how-
ever, is that it produces hundreds of lines of output per process. This prevents effective use 
of the plugin in a triage effort by an analyst working a real incident. To help in such situa-
tions, the plugin also provides a --triage option that only outputs methods that meet one or 
more criteria.  This is similar to the alertMsg function of RegRipper as implemented by Har-
lan Carvey [27].  
 
The first alert type is generated if a method is implemented in a different library than the 
majority of the other methods of the class. This is accomplished by keeping a hash table of 
each class and the libraries its methods use. Once enumeration is completed, the libraries 
used by each class are compared to ensure that all methods of each class are implemented 
in the same source. From my study of real-world and proof-of-concept malware, one meth-
od being swizzled is enough to accomplish specific malicious tasks. This makes the alert 
very effective against real-world samples.  
 
The second alert triggers if swizzled methods point to anonymous (non-file backed) re-
gions. Using the default runtime API, all class method implementations should be in a pro-
cess region backed by the implementing library. In the case of shellcode or reflective li-
brary injection [28] though, the method implementation will reside within an anonymous 
memory region. This again makes for simple alerting logic. The last alert type reports if a 
method is implemented in a library loaded from a suspicious directory, such as /tmp or 
/private/var/tmp.  
 

Combined, these filtered alerts provide investigators with immediately actionable indica-
tors as opposed to hundreds of data points that must be manually filtered.  
 

$ python vol.py -f memdmp.raw mac_swizzled -p 1497  
 
Name Pid  Class          Method        Method Address     Library 
---- ---- -------------- ------------- ------------------ ------- 
kl   1497 NSInputManager dealloc       0x00007fff95ba9d7f /System/Library/…/Versions/C/AppKit 
kl   1497 NSInputManager finalize      0x00007fff95ba9ead /System/Library/…/Versions/C/AppKit 
… 
kl   1497 NSInputManager description   0x00007fff95ba9f5c /System/Library/…/Versions/C/AppKit 
kl   1497 NSInputManager image         0x00007fff95ba9d6e /System/Library/…/Versions/C/AppKit 
kl   1497 NSInputManager isEnabled     0x00007fff95ba9a62 /System/Library/…/Versions/C/AppKit 
… 
kl   1497 NSInputManager hasMarkedText 0x00007fff95baa235 /System/Library/…//Versions/C/AppKit 
kl   1497 NSInputManager selectedRange 0x00007fff95baa2e5 /System/Library/…//Versions/C/AppKit 
kl   1497 NSInputManager insertText:   0x00007fff95ba9fe0 /System/Library/…//Versions/C/AppKit 

Figure 4.  Output of the new Volatility mac_swizzled plugin, which detects Objective-C pointer swizzling. 
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4.3. Named Ports 

4.3.1. Background 

 
Objective-C provides the ability for applications to register ports that are then accessible to 
all other Objective-C applications, to provide inter-process communication. This is handled 
by the NSPortNameServer class [30], which interacts with the Distributed Object subsystem 
[31]. Crisis leverages this functionality  in  order  to  mark  a   system as infected.  Since    
 
Crisis injects itself into many processes, it needs a method to ensure that different process-
es do not all attempt to infect the system and leave it in an inconsistent state.  Figure 5 il-
lustrates the named port check in Crisis. 
 

 
 
 
 
 
 
 
 

Figure 5. Crisis’ registration named port check. 
 
In this code, Crisis attempts to register the “com.apple.mdworker.executed” named port. 
The function will fail if the port is already registered, which allows Crisis to detect the pre-
vious installation of the backdoor.  
 
This use of a global system infection marker is analogous to the well-documented behavior 
of Windows malware samples that leverage mutexes or atoms to mark a system as infected. 
In facts, building a dictionary of known-bad mutexes and atom strings to immediately iden-
tify malware is a technique used by many forensics analysts. Similarly, experienced securi-
ty teams will build whitelist of mutexes from a known-good copy of a system so that they 
can then later be used to immediately spot anomalies in future investigations. Similar ap-
proaches can be ported to OS X systems to spot both known and unknown malware sam-
ples. 
 

4.3.2. Runtime Implementation 

 
On OS X versions 10.6 through 10.9, registered ports are stored in a hash table of the calling 
process' associated launchd process. Depending on the OS version and system runtime 
state, there may only be one launchd process, run as root (UID 0), or there may be several 
launchd processes. In the case of multiple launchd instances, there is generally one per user 
login as well as for specific services, such as the file system indexer, Spotlight. 

if (![[NSPortNameServer  
    systemDefaultPortNameServer] 
    registerPort: port  

name: @"com.apple.mdworker.executed"]) { 
    errorLog(@"NSPort check error! Backdoor 
             is already running"); 
   exit(-1); 
} 
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This hash table is a global variable named port_hash. Each key of the hash table is a struc-
ture of type machservice, which has two members of interest. The first, port_hash_sle, is the 
structure’s linkage into the per-hash bucket list of services. The second member of interest 
is name, which contains the ASCII name of the service. In the case of the port registered by 
Crisis, the name member is the NULL-terminated string “com.apple.mdworker.executed”. 
This hash table is populated through a client process, such as Crisis, by calling the register-
Port API. Internally, the port is represented by a NSMachBootstrapServer instance. This 
class is implemented in the proprietary OS X Foundation framework. Binary analysis of this 
class’ implementation reveals that it communicates with the associated remote launchd 
process through a call to bootstrap_look_up2. This function is implemented inside of the 
open source liblaunchd, which clients link with in order to use launchd’s client API. 
Through OS X’s IPC API, liblaunchd calls its server component (job_mig_look_up2) inside the 
remote launchd process. This remote function then checks if the port is already registered, 
and if not, it adds it to port_hash, among other initialization tasks. 
 
Beginning with OS X 10.10 (Yosemite), Apple closed source launchd and moved it to the 
proprietary libxpc library.  Currently, I have not performed analysis on the newer imple-
mentation, since Jonathan Levin, a well-known OS X and iOS researcher, has claimed that 
he has reverse-engineered the entire libxpc, and will be releasing a complete, open source 
clone with his book in early 2016 [36]. When his open source implementation is released, I 
will then add support for the newer OS X versions to the new plugin, which is described 
next. 
 

4.3.3. Volatility Analysis Plugin 

 
In order to analyze registered ports for launchd instances, the mac_launchd_ports Volatility 
plugin was developed. The plugin works as follows: 
 

$ python vol.py  -f infected-with-crisis.raw  mac_launchd_ports 
Volatility Foundation Volatility Framework 2.5 
Pid        Address                 Name 
--------   ---------------------   ---- 
       1      0x000000010443ab60   com.apple.security.pboxd 
       1      0x0000000104428a80   com.apple.SystemConfiguration.PPPController 
       1      0x000000010441cb90   com.apple.sandboxd 
… 
     119      0x0000000104e15820   com.apple.pictd 
     119      0x0000000104e0db80   com.apple.dock.appstore 
     119      0x0000000104e07800   com.apple.mdworker.prescan.0 
     119      0x0000000104e25980   com.apple.mdworker.executed 
     119      0x0000000104e08330   com.apple.axserver 
     119      0x0000000104e1d630   com.apple.syncdefaultsd.push 
     119      0x0000000104e162a0   com.apple.printtool.agent 
… 
 

 Figure 6.  Output of the new Volatility mac_launchd_ports plugin, which analyzes the use of named ports 

 on Mac OS X. 
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Enumerate all processes and filter to launchd instances. 
Find where launchd is mapped into process memory by walking the process memory map-
pings. 
Locate port_hash through a given command line option or by scanning. Similar to finding 
realized_class_hash, the offset of this symbol can be found manually from the file on disk or 
through inspection of /sbin/launchd, extracted from the in-memory file cache. Volatility al-
so supports dynamically finding it if the symbol table is memory resident. 
Walk each index of port_hash (maximum of 32), and each linked list stored at each index.  
Print the process ID, address, and name of each registered Mach service. 
 
The plugin also makes a best effort to filter out corrupt data, which is often encountered 
during memory forensics of real systems. It does this by ensuring that pointers point to val-
id addresses (i.e., are present in memory) as well as validates that the name member con-
tains a valid ASCII string. 
 
Figure 6 illustrates the output of the mac_launchd_ports plugin executed against a memory 
sample infected with Crisis. In the output, along with benign ports, the one that Crisis regis-
ters is also evident. 
 
Using a known-bad set of named ports would allow  immediate identification of malware 
like Crisis. An investigator could also build a whitelist of named ports from a known-good 
system and then use it to quickly find named ports of forensic interest. 
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5. Conclusions and Future Work 

 
In this thesis, new techniques for detecting userland malware written in Objective-C for 
Mac OS X were presented.   This research effort involved a deep analysis of the Objective-C 
runtime and APIs, to identify interesting process state that is potentially indicative of mali-
cious behavior, such registration of keystroke event monitors, the use of named ports, and 
pointer swizzling. The plugins created for the Volatility framework automatically analyze 
important artifacts in the Objective-C runtime and produce output that can easily be used 
by analysts to isolate and more deeply investigate these behaviors. Existing approaches for 
malware detection on Mac OS X do not detect the targeted behaviors, since the Objective-C 
runtime maintains state outside of the dynamic loader and the code section of executables. 
 
With the rapid adoption of OS X systems in corporate and government networks, along 
with the increasing number of advanced OS X malware samples already found in the wild, 
the need for robust detection of OS X specific rootkits will continue to grow. By incorporat-
ing Objective-C inspection techniques into their investigative workflows, forensic analysts 
will be far better prepared to detect and analyze advanced threats.   
 
In order to stay ahead of possible malware infection vectors, I plan to further explore the 
Objective-C runtime to find additional features and APIs that can be abused by malware. 
Because of the robust nature of the Objective-C runtime, I strongly suspect that additional 
work is needed to identify features that malware may leverage to operate undetected. 
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