Date of Award


Thesis Date


Degree Type

Honors Thesis-Restricted

Degree Name



Mechanical Engineering

Degree Program

Mechanical Engineering


Damon Smith


This research project primarily focuses on three major aspects: synthesis and inclusion of silver microparticles and nanowires within a polymer matrix, extrusion of composite filaments and, three-dimensional (3D) printing of multifunctional polymer composites. Since very few studies have explored the inclusion of silver nanoparticles in 3D printing materials, the findings from this study can be significant for additive manufacturing technology. Over the past few decades, the applications of additive manufacturing has been expanding considerably in several industries like automobile, biomechanics, aerospace, hardware engineering, to name a few. We are particularly interested in silver particles and nanowires because of their enhanced antimicrobial, mechanical and optical properties.

The unique antimicrobial properties of the silver-polymer composite will especially be applicable in the food and meat industry, where microbial infection is a major concern because of the exposure of microbes in the polymer belts that are used to transfer and package the items in the factory. It costs the industries a considerable amount of time, money and labor to regularly clean and sanitize those belts. If we are able to develop polymer belts with embedded antimicrobial properties, it could have tremendous applications in the food and meat industries. The morphology of the particles will be studied using scientific techniques like Transmission electron microscopy (TEM) and Scanning Electron Microscopy (SEM). The idea is then to nanoparticles will be incorporated into PLA polymer pellets and extruded into composite filaments that can be used for 3D printing of dog-bone test structures. After the fabrication process, tensile tests and fracture surface analysis will be conducted to study the extent of enhancement of the mechanical properties as compared to neat polymer 3D printed specimens. The critical challenge in this project would be to ensure homogenous distribution of the nanoparticles throughout the polymer filaments. This project will integrate concepts and applications from three different fields: nanotechnology, material science, and additive manufacturing.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this honors thesis in whole or part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the honors thesis.