Date of Award

Spring 5-16-2014

Degree Type


Degree Name


Degree Program

Engineering and Applied Science


Civil and Environmental Engineering

Major Professor



Generation of hydrogen sulfide (H2S) is a common phenomenon from wastewater collection, transport, and treatment processes. Impacts of H2S emissions from wastewater include corrosion and reduction in the service life of wastewater infrastructure, odor nuisance in the community, and health impacts on wastewater operations and maintenance personnel (Neilsen, et al. WEFTEC 2006).

Conventional odor control studies performed by municipalities to design their individual odor/corrosion control strategies largely depend on establishing a dilution to detection threshold (D/T) ratio and ascertaining the recognition threshold (R/T) for air samples collected from the study area. These conventional odor studies based on grab samples using R/T and D/T technique using a few days of data have a number of limitations and potentially lead to inaccurate conclusions. However, H2S emission studies using continuous air monitoring is expensive and time consuming.

The objective of this research is to understand the feasibility of utilizing emission factors as a tool to predict hydrogen sulfide emissions from headworks of four different Jefferson Parish, Louisiana wastewater treatment plants (WWTP). Proposed model(s) developed for predicting H2S emission factors that depend on wastewater parameters should be convenient for the municipalities to use as the data required is monitored routinely. Use of H2S emission models should assist rapid identification of H2S emission hot spots, optimize H2S control strategies, predict potential health risks, prevent community odor nuisance, and ascertain infrastructure corrosion.

This dissertation attempts to; i) develop a research methodology, ii) identify instruments required, iii) generate emission factor ranges and compare their sensitivity to wastewater parameters, iv) generate preliminary empirical emission models based on flow treated, population serviced and area served by a treatment plant for each sampling location and v) provide a roadmap for future research opportunities to refine the models generated as part of this dissertation.

Key words: emission model, emission factor, emission ranges, hydrogen sulfide, odor control, air quality, wastewater treatment.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.