Date of Award

Summer 8-11-2015

Degree Type


Degree Name


Degree Program

Electrical Engineering


Electrical Engineering

Major Professor

Dr. Leevongwat, Ittiphong

Second Advisor

Dr. Rastgoufard, Parviz

Third Advisor

Dr. Amiri, Ebrahim


Installation of reactive compensators is widely used for improving power system voltage stability. Reactive compensation also improves the system loading margin resulting in more stable and reliable operation. The improvements in system performance are highly dependent on the location where the reactive compensation is placed in the system. This paper compares three load flow analysis methods - PV curve analysis, QV sensitivity analysis, and Continuation Load Flow - in identifying system weak buses for placing reactive compensation. The methods are applied to three IEEE test systems, including modified IEEE 14-bus system, IEEE 30-bus system, and IEEE 57-bus system. Locations of reactive compensation and corresponding improvements in loading margin and voltages in each test system obtained by the three methods are compared. The author also analyzes the test systems to locate the optimal placement of reactive compensation that yields the maximum loading margin. The results when compared with brute force placement of reactive compensation show the relationship between effectiveness of the three methods and topology of the test systems.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.