Date of Award

Fall 12-2017

Degree Type


Degree Name


Degree Program

Electrical Engineering


Electrical Engineering

Major Professor

Dr. Ebrahim Amiri

Second Advisor

Dr. Parviz Rastgoufard

Third Advisor

Dr. Ittiphong Leevongwat


This thesis aims to design and develop LSPM motors capable of operating in two distant synchronous speeds with good starting torque and steady state characteristics for variety of industrial applications, in particular offshore and maritime applications. The proposed designs are based on variable pole numbers for the stator and the rotor. The stator winding consist of two independent windings with different pole numbers to switch the winding and change the operating pole count for low and high speed applications. For the motor to operate in these two distinct operating speeds, the rotor must be capable of creating two different magnetic polarities (pole numbers) to adapt itself to the stator operating pole number. For this purpose, two different schemes for the rotor structure are proposed. In scheme I two-speed operation is realized by the combination of electromagnetic torque and reluctance torque which enables the motor to operate as a synchronous PM motor at high speed and synchronous reluctance motor at low speed. In scheme II, rotor with dual PM polarity is proposed which enables the motor to operate as a PM motor at both low and high speed regions.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.