Date of Award

Spring 5-2019

Degree Type


Degree Name


Degree Program




Major Professor

Tarr, Matthew

Second Advisor

Wiley, John

Third Advisor

Poltavets, Viktor


To this day, fossil fuels still make up over 80% of the earth’s energy production. Many sources of renewable energy are available, but photovoltaics is the only source with the capacity proven to meet the increasing world energy needs. Third generation devices such as dye-sensitized and organic solar cells have gained much interest due to their cost effectiveness and flexibility but have yet to become commercially viable. Here methods have been studied to improve these devices with the use of Gold nanowire arrays. These additions provide plasmonic and light scattering enhancements in dye-sensitized solar cells. Different TiO2 deposition methods have been studied to protect the gold from the redox couple in the electrolyte. Several novel methods have been undertaken to incorporate gold nanowire arrays in organic solar cells with some success. Structural characterization shows the proposed architecture is achieved, but working devices met suffered from low success rate.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.