ORCID ID

https://orcid.org/0000-0002-5842-8486

Date of Award

Fall 12-18-2020

Degree Type

Dissertation

Degree Name

Ph.D.

Degree Program

Engineering and Applied Science

Department

Mechanical Engineering

Major Professor

Uttam K. Chakravarty

Abstract

The powder-bed fusion (PBF) process is a subdivision of Additive Manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3-D) parts. Two of the most effective PBF processes are selective laser melting (SLM) and electron beam additive manufacturing (EBAM), which can fabricate full-density metallic parts in a layer-by-layer fashion. In this study, thermal behavior and melt-pool dynamics in the PBF process are investigated by developing 3-D multiphysics-based thermo-fluid models for both SLM and EBAM, containing Ti-6Al-4V alloy as a powder-bed material. The laser and electron beams are modeled as conical volumetric heat sources having the Gaussian distribution. The temperature-dependent properties of Ti-6Al-4V and the heat source parameters are incorporated in the models as the user-defined functions. The melt-pool geometry and its thermo-fluid behavior are investigated numerically using computational fluid dynamics, and results for temperature profile, variation in thermo-physical properties, the melt-pool velocity and geometry, and cooling rate are obtained under various heat source specifications. The modeling results for SLM and EBAM under the same irradiation conditions are compared to describe their deterministic features to be considered for industrial applications. The comparison shows that under the same energy density and beam interaction time, the SLM process gives a smaller melt-pool volume but a faster average cooling rate than those in the EBAM process. The thermo-fluid models are validated by comparing the simulation results for the melt-pool geometry with experimental results and resembling the numerical melt-front position with the analytical solution for the classical Stephan problem of melting of a phase-change material.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS