Date of Award


Degree Type


Degree Name


Degree Program

Engineering and Applied Science


Civil and Environmental Engineering

Major Professor

Kura, Bhaskar

Second Advisor

Barbe, Donald

Third Advisor

Cothren, Gianna

Fourth Advisor

Tarr, Matthew

Fifth Advisor

Busch, William


Dry abrasive blasting is one of the most widely used methods of surface preparation. Air emissions from this process include particulate matter (PM) and metals. Spent abrasive generated from this process may be hazardous in nature. With increasing concern on health effects due to silica emissions from sand, use of alternative materials is suggested by health and regulatory agencies. The objective of this research was to evaluate performance of expendable abrasives and determine PM emission factors. Dry abrasive blasting was performed in an enclosed chamber and total PM samples were collected. Three commonly used expendable abrasives, coal slag, copper slag and specialty sand, were used to evaluate cleaner alternatives. Blast pressure and abrasive feed rate, two important process conditions were varied to study their effect on performance of an abrasive. Productivity, consumption and emission factors (performance parameters) were calculated and their variation with pressure and feed rate was evaluated. Two dimensional and three dimensional predicted models were developed to estimate the performance at intermediate blast pressure and feed rate conditions. Performance of the three abrasives was compared with respect to emission potential, productivity and consumption. Emission factors developed in this research will help in accurate estimation of total PM emissions and to select cleaner abrasives and optimum process conditions that will results in minimum emissions and reduced health risk. The productivity and consumption models will help is estimating life cycle costs including material cost, equipment cost, energy cost, labor costs, waste disposal cost, and compliance costs. Consumption models will also help in determining the quantity of spent abrasive generated, identify abrasives with lower material consumption, and identify process conditions that generate minimum spent abrasives. In addition, these models will help industries in making environmentally preferable purchasing (EPP), which results in pollution prevention and cost reduction.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.