Date of Award


Degree Type


Degree Name


Degree Program

Engineering and Applied Science


Electrical Engineering

Major Professor

Bourgeois, Edit; Trahan, Russell

Second Advisor

Ioup, Juliette

Third Advisor

Charalampidis, Dimitrios

Fourth Advisor

Saxton, Ralph


An approach for processing sonar signals with the ultimate goal of ocean bottom sediment classification and underwater buried target classification is presented in this dissertation. Work reported for sediment classification is based on sonar data collected by one of the AN/AQS-20's sonars. Synthetic data, simulating data acquired by parametric sonar, is employed for target classification. The technique is based on the Fractional Fourier Transform (FrFT), which is better suited for sonar applications because FrFT uses linear chirps as basis functions. In the first stage of the algorithm, FrFT requires finding the optimum order of the transform that can be estimated based on the properties of the transmitted signal. Then, the magnitude of the Fractional Fourier transform for optimal order applied to the backscattered signal is computed in order to approximate the magnitude of the bottom impulse response. Joint time-frequency representations of the signal offer the possibility to determine the time-frequency configuration of the signal as its characteristic features for classification purposes. The classification is based on singular value decomposition of the time-frequency distributions applied to the impulse response. A set of the largest singular values provides the discriminant features in a reduced dimensional space. Various discriminant functions are employed and the performance of the classifiers is evaluated. A study of various classifiers' performance is carried-out for the proposed algorithm under two scenarios for determining the impulse response: FrFT method versus standard deconvolution method. Of particular interest for underwater under-sediment classification applications are long targets such as cables of various diameters, which need to be identified as different from other strong reflectors or point targets. Synthetic test data are used to exemplify and evaluate the proposed technique for target classification. The synthetic data simulates the impulse response of cylindrical targets buried in the seafloor sediments. Results are presented that illustrate the processing procedure. An important characteristic of this method is that good classification accuracy of an unknown target is achieved having only the response of a known target in the free field. The algorithm shows an accurate way to classify buried objects under various scenarios, with high probability of correct classification.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.