Date of Award


Degree Type


Degree Name


Degree Program

Engineering and Applied Science


Mechanical Engineering

Major Professor

Hui, David

Second Advisor

Herrington, Paul

Third Advisor

Mattei, Norma Jean

Fourth Advisor

Spinu, Leonard

Fifth Advisor

Stokes, Kevin


There is a raising need to design a safe and efficient cryogenic fuel tank for the new generation of reusable launch vehicles. The new tank design focuses on composite materials that can achieve the drastic reduction of empty/non-payload and structural weight. In addition to the materials to be compatible with cryogenic temperatures, interior components of the vehicle may be subjected to significantly elevated temperatures due to heat conduction from the vehicle surfaces during and after atmospheric re-entry. Therefore, there is the need to understand the performance of the composites after experiencing extreme thermal environments. Polymer-layered nanocomposites were studied to determine if they can reduce the permeation to the liquid nitrogen used as fuel in the next generation of space vehicles. Due to the non-permeable nature of the silicates and the exfoliated structure they adopt into the polymer matrix the addition of nanoclays into a polymer is expected to reduce the permeation to several gases without sacrificing the mechanical strength of the nanocomposite as well as providing additional improvements such as increase of thermal stability of the nanocomposite. Several types of matrixes modified with different types and content of nanoclays were tested and their permeability coefficient was calculated. The permeability values obtained for the different formulations assisted to understand the transport properties of nanoclay modified composites. In addition to this, thermal characterization was performed with the help of dynamic mechanical analysis, thermogravimetric analyses and differential scanning calorimetry studies. To determine if the nanoclay modified nanocomposites were affected by extreme temperatures the samples were subjected to thermal cycling. Comparison of the transport and thermal properties before and after cycling helped to analyze the effect of the addition of the nanoclays in the nanocomposites. Positron annihilation spectroscopy (PAS) was utilized to comprehend how the distribution of the free volume was affected by the presence of the nanoclays and by the thermal cycling applied. Different permeability models were utilized in an attempt to validate the experimental results of the different nanocomposite structures. This analysis was used to provide additional insight into many aspects of the experimental results obtained in this study.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.