Date of Award


Degree Type


Degree Name


Degree Program

Engineering and Applied Science


Computer Science

Major Professor

Tu, Shengru

Second Advisor

Roussev, Vassil

Third Advisor

Chaudhry, Nauman

Fourth Advisor

Abdelguerfi, Mahdi

Fifth Advisor

Chen, Huimin

Sixth Advisor

Holladay, Ken


As Web services grow in maturity and use, so do the methods which are being used to test and maintain them. Regression Testing is a major component of most major testing systems but has only begun to be applied to Web services. The majority of the tools and techniques applying regression test to Web services are focused on test-case generation, thus ignoring the potential savings of regression test selection. Regression test selection optimizes the regression testing process by selecting a subset of all tests, while still maintaining some level of confidence about the system performing no worse than the unmodified system. A safe regression test selection technique implies that after selection, the level of confidence is as high as it would be if no tests were removed. Since safe regression test selection techniques generally involve code-based (white-box) testing, they cannot be directly applied to Web services due to their loosely-coupled, standards-based, and distributed nature. A framework which automates both the regression test selection and regression testing processes for Web services in a decentralized, end-to-end manner is proposed. As part of this approach, special consideration is given to the concurrency issues which may occur in an autonomous and decentralized system. The resulting synchronization method will be presented along with a set of algorithms which manage the regression testing and regression test selection processes throughout the system. A set of empirical results demonstrate the feasibility and benefit of the approach.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.