Date of Award


Degree Type


Degree Name


Degree Program

Environmental Engineering


Civil and Environmental Engineering

Major Professor

Kura, Bhaskar

Second Advisor

La Motta, Enrique

Third Advisor

McCorquodale, John A.


Inhalation risks on human health for hazardous air pollutants emitted from MACT I petroleum refining industry were determined using EPA HEM-3 Program. Methodology included compiling vertical and fugitive emissions from 2002 National Emissions Inventory for sources inside two facilities in Louisiana, 'Motiva Norco' and 'Valero St. Charles' refineries. Six cases were modeled applying EPA criteria, where cancer risks are 'low' if the probability is. 1/1, 000, 000, and non-cancer risks are harmful when hazard quotient is > 1. It was demonstrated that fugitive emissions have more impact on human health than the verticals because of their significant portion of the total refining emissions. HAPs can cause moderate adverse effects in humans living nearby refineries, as 113 people resulted in high risk of respiratory problems with Valero emissions, 4571 people resulted in 'moderate' risk of getting cancer with Motiva emissions, 2702 people with Valero emissions, and 11, 282 people with both refineries' emissions.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.