Date of Award


Degree Type


Degree Name


Degree Program




Major Professor

Wang, Guijun

Second Advisor

Trudell, Mark

Third Advisor

Jursic, Branko

Fourth Advisor

Rick, Steven


Low molecular weight gelators (LMWGs) are small molecules that are capable of entrapping solvents to form a gel in organic solvents or aqueous solution. These compounds rely solely on noncovalent forces to form the fibrous networks necessary to entrap a variety of solvents. The organogels and hydrogels thus formed could have applications in a variety of fields from environmental to biological to medicinal. Carbohydrates are ideal starting materials to synthesize LMWGs, because of their natural abundance, dense chirality, and biocompatibility. D-Glucose is the most common monosaccharide and D-glucosamine is isolated from natural sources, such as crab shells. Several series of compounds were synthesized using compounds 1-3 as the starting materials. These include esters, carbamates, amides, and ureas. The structure and gelation relationship was analyzed to obtain guidelines for designing new LMWGs. Compound 1 is a simple derivative of D-glucose and its terminal alkynyl esters and saturated carbamates are effective gelators. Compound 2 is a simple derivative of D-glucosamine and its amide and urea derivatives are also effective gelators. Compound 3 is formed from the deoxygenation of D-glucose. 1OOHOOCH3OHOPh2OOHOOCH3NH2OPh3OOHOOHOPh The design, synthesis and gelation properties of several classes of sugar based low molecular organo/hydrogelators will be discussed in this thesis in chapters 2, 3, and 4. After obtaining highly effective organo/hydrogelators, potential applications of these novel molecular systems can be explored. Some preliminary study on using one of the gelator in enzyme assay has shown that it is possible to utilize the hydrogels to immobilize enzymes. However, future research can explore further on the applications of these gelators.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.