Date of Award


Degree Type


Degree Name


Degree Program

Computer Science


Computer Science

Major Professor

Zhu, Dongxiao

Second Advisor

Summa, Christopher M.

Third Advisor

Taylor, Christopher M.


There is a significant need to identify approaches for classifying chemical sensor array data with high success rates that would enhance sensor detection capabilities. The present study attempts to fill this need by investigating six machine learning methods to classify a dataset collected using a chemical sensor array: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Classification and Regression Trees (CART), Random Forest (RF), Naïve Bayes Classifier (NB), and Principal Component Regression (PCR). A total of 10 predictors that are associated with the response from 10 sensor channels are used to train and test the classifiers. A training dataset of 4 classes containing 136 samples is used to build the classifiers, and a dataset of 4 classes with 56 samples is used for testing. The results generated with the six different methods are compared and discussed. The RF, CART, and KNN are found to have success rates greater than 90%, and to outperform the other methods.


The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.