Document Type

Article

Publication Date

12-1978

Abstract

We extend the scope of the Mueller calculus to parallel that established by Jones for his calculus. We find that the Stokes vector S of a light beam that propagates through a linear depolarizing anisotropic medium obeys the first-order linear differential equation dS/dz = mS, where z is the distance traveled along the direction of propagation and m is a 4 × 4 real matrix that summarizes the optical properties of the medium which influence the Stokes vector. We determine the differential matrix m for eight basic types of optical behavior, find its form for the most general anisotropic nondepolarizing medium, and determine its relationship to the complex 2 × 2 differential Jones matrix. We solve the Stokes-vector differential equation for light propagation in homogeneous nondepolarizating media with arbitrary absorptive and refractive anisotropy. In the process, we solve the differential-matrix and Mueller-matrix eigenvalue equations. To illustrate the case of inhomogeneous anisotropic media, we consider the propagation of partially polarized light along the helical axis of a cholesteric or twisted-nematic liquid crystal. As an example of depolarizing media, we consider light propagation through a medium that tends to equalize the preference of the state of polarization to the right and left circular states.

Journal Name

Journal of the Optical Society of America (1917-1983)

Comments

This paper was published in Journal of the Optical Society of America (1917-1983) and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-68-12-1756. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Share

COinS