Document Type

Article

Publication Date

2012

Abstract

This paper examines the effect of damping on a nonstrictly hyperbolic 2 x 2 system. It is shown that the growth of singularities is not restricted as in the strictly hyperbolic case where dissipation can be strong enough to preserve the smoothness of solutions globally in time. Here, irrespective of the stabilizing properties of damping, solutions are found to break down in finite time on a line where two eigenvalues coincide in state space.

Journal Name

Quarterly of Applied Mathematics

Comments

Preprint

Share

COinS