Date of Award

Summer 8-2013

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Applied Physics

Department

Physics

Major Professor

Dr. Kevin Stokes

Second Advisor

Dr. Leszek Malkinski

Third Advisor

Dr. Ashok Puri

Abstract

An experimental Nernst effect measuring system is designed and constructed. The ability to measure the Nernst effect allows completion of a thermoelectric suite of measurements consisting of electrical conductivity, the Seebeck effect, the Hall effect, and the Nernst effect. This suite of measurements gives information about electron transport, carrier concentration, and electron scattering within a thermoelectric sample. Programs were designed in LabView to control the various instruments in the measuring system. Measurements of the Nernst effect were taken on two thermoelectric samples, bismuth nickel telluride and bismuth antimony telluride. These measurements were taken at both constant temperature and constant magnetic field. An error analysis of the Nernst effect measuring system is also presented, with consideration as to future work that can be done to improve the quality of Nernst effect measurements taken from the system.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS