Date of Award

Fall 12-2017

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Mathematics

Department

Mathematics

Major Professor

Dr. Ralph Saxton

Second Advisor

Dr. Kenneth Holladay

Third Advisor

Dr. Juliette Ioup

Fourth Advisor

Dr. Jairo Santanilla

Abstract

Chapter 1 presents the basic principles of Controlled Thermonuclear Fusion, and the approaches to achieve nuclear fusion on Earth. Furthermore, the basic components of the Tokamak, the reactor which will house the fusion reaction, are analyzed. Finally, the chapter ends with a discussion on how the present thesis is related to the Controlled Thermonuclear Fusion. Chapter 2 introduces briefly the basic concepts of the Electromagnetic and Magnetohydrodynamic theories as well as MHD turbulence. Chapter 3 presents a first glance in OpenFOAM CFD library. Chapter 4 introduces the Orszag-Tang vortex flow, which is a benchmark test case for MHD numerical models. Also, the results obtained by the model developed in this thesis are presented and discussed. Chapter 5 describes an analytical solution method for the MHD natural convection in an internally heated horizontal shallow cavity. Also, a finite volume numerical model is presented for solving the aforementioned problem and properly validated. The results of the numerical model are compared with the analytical solutions for a range of Rayleigh and Hartmann numbers. Finally, conclusions based on this work are drawn and recommendations for future work are made.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS