Date of Award

Summer 8-2018

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Mechanical Engineering

Department

Mechanical Engineering

Major Professor

Uttam K Chakravarty

Second Advisor

Paul J Schilling

Third Advisor

Paul D Herrington

Abstract

Rotary wing aircrafts in any flight conditions suffer from excessive vibration which makes the passengers feel uncomfortable and causes fatigue failure in the structure. The main sources of vibration are the rotor harmonic airloads which originate primarily from the rapid variation of flow around the blade due to the vortex wake. In this thesis, a mathematical model is developed for rotor blades to compute the harmonic airloads at rotor blades for two flight conditions vertical takeoff and landing, and forward flight. The sectional lift, drag, and pitching moment are computed at a radial blade station for both flight conditions. The lift at a particular radial station is computed considering trailing and shed vortices and summing over each blade. The results for airloads are obtained after considering zeroth, first, and second harmonics. The calculated results for airloads are compared to the experimental flight-test data.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS