Date of Award

12-2007

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Applied Physics

Department

Physics

Major Professor

Stokes, Kevin

Second Advisor

Malkinski, Leszek

Third Advisor

Wiley, John

Abstract

A magneto-optical study of CoxFe1-xFe2O4 nanoparticles is presented, with cobalt molar ratio 0.x.1. The ferrite nanoparticles were produced using a generic wet-chemical synthesis procedure. Stoichiometric amounts of Fe2+, Fe3+ and Co2+ salts are dissolved in a non-aqueous polar medium (diethylene glycol). A coprecipitation reaction with sodium hydroxide produces ferrite nanoparticles with average diameter of 6 nm. The nanoparticles can be stabilized by tetramethyl ammonium hydroxide in water, or, alternatively, the nanoparticles can be treated with a hydrophobic capping ligand with a carboxylic acid or amine head group and suspended in a non-polar organic solvent. As a complete structural analysis of this series of samples is quite difficult due to the similarities of the constituents, magneto-optical spectroscopy is performed to decode the structural orientations of each cation involved. Faraday rotation was measured on nanoparticle samples dried on an amorphous silica substrate from 400-1000 nm.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS