Date of Award
12-2008
Degree Type
Dissertation
Degree Name
Ph.D.
Degree Program
Chemistry
Department
Chemistry
Major Professor
Jursic, Branko S.
Second Advisor
Trudell, Mark L.
Third Advisor
Morgan, Lee Roy
Fourth Advisor
Wiley, John B.
Fifth Advisor
Wang, Guijin
Abstract
4, 4'-Dihydroxybenzophenone-2, 4-dinitrophenylhydrazone (A-007) has recently completed a phase-I clinical trial, and objective responses were seen in advanced breast cancer, lung cancer, ovarian cancer, melanoma, skin cancer and non-Hodgkin's lymphoma. Despite the promising results in the clinical trials, the major disadvantage to using A-007 as a broad-scale therapeutic is its poor water solubility. To make use of this promising anticancer drug either orally or intravenously, the short-term obstacle must be to overcome the limited solubility of A-007 in water. There are several approaches to overcome this obstacle. The first approach is to make hydrolysable prodrugs of A-007. The second approach is to make an A-007 complex with a water soluble host, such as cyclodextrin. We used a combination of these two previously described methods, i.e. transforming A-007 into a more water soluble prodrugs and then further increasing the prodrug water solubility by making their cyclodextrin inclusion complexes. Our syntheses and spectroscopic explorations of A-007 prodrugs are presented in this dissertation. Tetramic acid (2, 4 pyrrolidine-2, 4-dione ring system) containing compounds have been found to display a remarkable diversity of biological activities and have attracted the interest of medicinal and synthetic chemists. Magnesidin (1-acetyl-3-octanoyl-5-ethylidene tetramic acid) has strong antimicrobial activity against bacteria that cause gingivitis and dental plaque. Current efforts toward the synthesis of Magnesidin are discussed along with the plans for the completion of synthesis.
Recommended Citation
Sagiraju, Sarada, "Synthesis and Spectroscopic Study of Anticancer agent A-007 Prodrugs and Progress Towards the Synthesis of Tetramic acid Antibiotics" (2008). University of New Orleans Theses and Dissertations. 900.
https://scholarworks.uno.edu/td/900
Rights
The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.